Carnegie Mellon University

Motivation

• Previous evaluation of saliency methods focused on verifying if they highlight objects the model is **expected** to use in predictions.

A model trained to identify a bat should focus on the bat!"

• However, it may be the case that the model is using different object(s) to make predictions that **misalign** with expectations.

"A model in fact relies on the hitter and the alove to identify the bat!"

• Can we evaluate based on ground-truth model reasoning?

Methods

- → know the ground-truth before testing

- Based on the known model reasoning, we can define ground-truth feature attribution specifying:
- What feature should be highlighted (relevant objects)
- What feature should not be highlighted (irrelevant objects) •

Sanity Simulations for Saliency Methods Joon Kim, Gregory Plumb, Ameet Talwalkar

{joonsikk, gdplumb, atalwalk}@cs.cmu.edu

Result 1. Simple vs Complex Reasoning

- Different types of reasoning are simulated
- **Simple Reasoning**: model relies on a *single* object in the image
- **Complex Reasoning**: model relies on *multiple* objects in the image
- Intersection-over-Union (IOU): ratio of intersecting region over union → Decreasing performance for complex reasoning

- Attribution Focus Level (AFL): proportion of total attribution values concentrated around specific objects
- *Primary AFL (PAFL)*: around the *relevant* objects \rightarrow the higher the better
- Secondary AFL (SAFL): around the *irrelevant* objects \rightarrow the lower the better

Defining success

- **PAFL > 0.5** = "More than half of the attribution values highlight the relevant object"
- → Only a handful of methods succeed in simple reasoning (white regions, top)

Defining *failure*

• **SAFL > PAFL** = "More attribution values on irrelevant object than on the relevant object"

→ Almost all methods fail for **complex reasoning** in more than half of the images

(black regions, bottom)

				-	
cket #	Focus	Avoid	Bucket #	Focus	Avoid
7	-	-	10	Both Boxes	-
8	-	Text A	11	Both Boxes	Text A
9	-	Text B	12	Both Boxes	Text B
9	-	Text B	12	Both Boxes	Text B

Result 2. Users' Difficulty in Understanding Models

Result 3. Natural Backgrounds

- Images with natural backgrounds, while reasoning over the same objects
- Performance drop
- simple reasoning (blue) \rightarrow complex (red)
- black backgrounds (dotted) \rightarrow real (solid)

 \rightarrow Under more realistic noisy scenarios, the performance deteriorates further. → Important to test success in controlled settings to see success in the wild.

Summary

- We propose an evaluation framework of saliency methods based on the ground-truth model reasoning.
- Leading saliency methods cannot consistently recover the model's reasoning correctly, especially for complex ones.
- More robust testing of these methods is necessary under various (even simple) scenarios before bringing them into practice.

Distinguishing model reasoning is difficult as all objects are highlighted regardless of the difference in details of the reasoning.

